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Abstract—The equations of convective mass transfer are derived from the equations of convective heat
transfer by replacing Nu, with Sh and Pry with Sc and also (%* /w)Gr with (y/w)Gr for free-convection
condensation. As for forced-convection condensation, the equations of Rose and Fujii e al. and the newly
presented equation for mass transfer have almost the same accuracy, although their functional forms are
quite different from each other. The accuracy of Rose’s equation for heat transfer decreases as the effect
of the enthalpy diffusion term increases. As for free-convection condensation, the newly presented equation
for mass transfer is applicable in a wider range of Wy or M in comparison with the previous equation of
Fujii et al.

1. INTRODUCTION

IN THE condensation of a binary vapor mixture the
Sherwood number Sh for the convective mass transfer
and the Nusselt number Nu, for the convective heat
transfer in the vapor phase are functions of Reynolds
number Rey or Grashof number Gr, Schmidt number
Sc¢ or Prandtl number Pry, and also condensation
mass flux. Fujii er al. [1] obtained an equation of Sh
(Rey, Sc, W vi/W,y..) from the similarity solution
for forced-convection condensation of an air-stream
mixture on a flat surface, where W,y; and Wy are
the mass concentrations of air at the vapor-liquid
interface and in the main stream, respectively.
Further, they derived an equation of Nu_ (Rey, Pry,
Mgy) by replacing Sh with Nu, and Sc with Pry
and by transforming W,y;/W,y.. to the dimensionless
mass flux My, using one of the compatibility con-
ditions at the vapor-liquid interface. The Nu, equa-
tion correlates well the data for the heat transfer of
the similarity solution. Rose [2] presented an equation
of Nu.. Rey? as the function of Pry and a suction
parameter in the case of single phase, simultaneous
heat and mass transfer. Further, he [3] clarified, using
the similarity solutions by Koh {4], Fujii et al. [1], and
Sparrow et al. [5], that the equation is applicable to
the convective mass transfer in the case of forced-
convection condensation of a vapor with a non-
condensing gas, when Nu, and Pry are replaced
with Sh and Sc, respectively.

In the above-mentioned analyses, however, the
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enthalpy diffusion term in the energy equation of
vapor phase is neglected. Consequently the effect of
the term upon the heat transfer should be clarified. It
will also be significant to confirm the possibility of
analogical transformation between Nu, and Sh in free-
convection condensation. In this paper, these two
items are discussed. Prior to the discussion, the con-
vective mass transfer coefficient and corresponding
Sherwood number are closely defined.

2. RELATIONS AMONG MASS TRANSFER
COEFFICIENT, SHERWOOD NUMBER, AND
CONDENSATION MASS FLUX

In the case of the condensation of a binary vapor
mixture, the mass transfer coefficient §, between the
vapor-liquid interface and the bulk vapor mixture and
the corresponding Sherwood number Sh, are defined,
respectively, by

W,y _
- <PvD ay ) =B.(Wivi—Wiv) (1
_ Bx
Sh, = ouD (2)

where py is the density of the vapor mixture, D the
diffusivity between components 1 and 2, W,y the mass
concentration of volatile component 1, y the normal
distance from the cooling surface, x the distance mea-
sured along the cooling surface from its leading edge.
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Cy(Pry) function of Pry, equation
(22)

C:(Sc) function of Se¢, equation (22)

Cgs(Pry) function of Pry, equation (36)

Cs(Sc) function of Sc, equation (36)

¢ isobaric specific heat

¢,; dimensionless isobaric specific heat
difference, equation (27)

D diffusivity between components 1 and 2
in a binary vapor mixture

Gr Grashof number, equation (42)

g gravitational acceleration

M molecular weight

dimensionless condensate mass flux

defined by using physical properties of

vapor mixture for forced-convection

condensation, equation (21)

dimensionless condensate mass flux

defined by using physical properties of

vapor mixture for free-convection

condensation, equation (41)

m condensation mass flux [mass condensed

per unit time per unit area]

Nusselt number corresponding to o,

equations (17), (33) and (47)

Pr Prandtl number, uc,/A

p static pressure

ge heat flux in the vapor side at the vapor—
liquid interface

Gw heat flux at the cooling surface

R puratio, (pLpu/pvpy)'?

Rey  Reynolds number, equation (16)

Sc Schmidt number, vy/D

Sh Sherwood number, equations (2), (6),
(15), (32), (45) and (46)

Moy

T temperature
Uy, main stream vapor velocity in the x
direction

w mass concentration (mass fraction)

We  (Wii—Wi)/(W,ve— W), equation
(25)

X distance measured along the cooling
surface from the leading edge

y normal distance from the cooling
surface.

NOMENCLATURE

Greek symbols
B mass transfer coefficient, equations (1),
4), (14) and (31)

Ahy latent heat of condensation

AT, degree of superheat of bulk vapor,
TVx, - 7-;:1.

o condensate film thickness

Hey  similarity variable for the vapor
boundary layer in forced-convection
condensation, equation (13)

ey  similarity variable for the vapor
boundary layer in free-convection
condensation, equation (30)

(0] dimensionless temperature
(Tv..—Tv)/(Tv,,— T}), equation (18)

K thermal diffusivity

A thermal conductivity

u dynamic viscosity

v kinematic viscosity

P density

(6] normalized mass concentration of vapor,
equation (12)

X equation (37)

x* equation (38)

w equation (43)

Wy equation (40)
Wy, equation (39).

Superscript
differential derivative with respect to ngy

or gy-

Subscripts
1,2  volatile and less volatile components of
binary vapor mixture, respectively

F forced-convection condensation
G free-convection condensation

i vapor-liquid interface

L condensate

S saturated

sim  similarity solution

A% vapor

w cooling surface

X local values at x

0 bulk, at y = co.

The subscripts V, i, and oo denote the values in the
vapor, vapor-liquid interface, and bulk vapor,
respectively.

The compatibility condition for the mass con-
centration at the vapor-liquid interface, based on the
boundary layer assumption, is expressed as

o Wi
. = Wym,+pyD 3y ) 3

where m1,, is the condensation mass flux of component
1, m, the total condensation mass flux. From equa-
tions (1) and (3), B, is derived as

_ Witie—rin,
WlVi - WIVm
When the condensate is miscible, the mass con-

centration W,_of component 1 in the condensate is
expressed as

Bs 4
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W=

&)

x

Substituting m1, in equation (5) into equation (4), and
substituting it into equation (2), we obtain

Sh, = mx(W .y, —Why)

_pVD(W]Vi_W|VI:). ©

For a given value of T}, the values of W,,; and W,
are obtained from the phase equilibrium relation, and
then the value of m, can be calculated by using a
Sh, equation and equation (6). The value of T; is
calculated by using a heat transfer equation for the
condensate film, which is a function of m,. Therefore,
the solution of the simultaneous equations of mass
transfer for the vapor phase and heat transfer for
the condensate film provides the thermal state at the
vapor-liquid interface and the condensation mass
flux.

In the case where the component 1 is a non-
condensing gas, it is taken that m,, = 0 (#1,, = m,),
and W, = 0 in the above equations. In this case, other
definitions of the mass transfer coefficient 8¥ and the
Sherwood number Sh* are used in refs. [1, 3] as

—_— m'\-
B (WlVi - WIV‘:c)

Bix mex
pvD B pvDW i —Wiv.)'

B: Q)

Sh¥ =

®

By comparing equation (4) with equation (7) and
equation (6) with equation (8), the following relations
are obtained :

B.= W iB¥ )
Sh, = Wy Sh*. (10)

3. AN ANALOGICAL TRANSFORMATION
BETWEEN THE EQUATIONS OF MASS
TRANSFER AND HEAT TRANSFER, AND
THEIR ACCURACY

3.1. Forced-convection condensation on a flat surface

According to the similarity transformation [6], the
gradient of mass concentration at the vapor-liquid
interface is given as

ow Uyo, \2
( F W) =Wywi— WIVoo)( v ) Fi
Y /i Yy X

where Uy, is the vapor mixture velocity in the main
stream, vy the kinematic viscosity of the vapor
mixture, and @ the normalized mass concentration
of component 1, which is defined by

(I

Wi—

Op = Ve
F WIVi_WIVm

(12)

and the prime denotes the differential derivative with
respect to the following similarity variable

U t/2
Ney = (y—5)< V“”)

VyX

(13)

where ¢ is the condensate film thickness.
Eliminating (6W,y/dv); from equations (11) and
(1), we obtain

Uy, \2
ﬂ.\-=va< ) (—p).

Yy X

(14)

Substituting equation (14) into equation (2), we
obtain

Sh, = — O Re\',(\.2 (13
where
Uy
Rey, = ===, (16)

v

On the other hand, the Nusselt number Nu,, for the
convective heat transfer in the vapor side is given as

(6

Nug, = 2% = @4y, Rell? (17)
Ty

where Oy, is the dimensionless temperature defined
by

TVao - TV

O =T —T

(13)
The functional form of equations (15) and (17) is the
same.

The formulas of ®r; and Oty for a vapor with non-
condensing gas which were proposed by Rose [3], are
expressed as

Ce(S¢) .
~Ps= - 19
M = Tr00a1aR S0 T Mev Se (19)
;o C(Pry) .
— Oy = 110941 M5 * Pri’s + Mgy Pry (20)
where
. m.x
Moy = —— 21)
™y Rl (
Ce(0) = C'/2(27.8+75.9C°‘3°6+657C)"/6
{=S8c or Pry. 22)

The functional form of equations (19) and (20) is also
the same. On the other hand, the present authors [6, 7]
proposed the following equations from the numericat
solutions for mixtures of ethanol-water, CFC114-
CFCl11 and a mixture of water, ethanol, CFC114 and
HCFC22 with air

25 V"
— % = Ce(Sc) (m> We
— Oy = Ce(Pry)(1 +2.6Pr3% ML
x{1=4c,.(Wwi—Wi)}) (29)

(23)
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where
lei"‘ WIL
Wo=——"—7— 25)
: WIV;@ - WIL (
m=0.540.055¢-02R"'"? (26)
L Cpiv = Cpay _ Siv TGy 37
o2 v Wiyt Way Cpv @n

and R is the py ratio and c, the isobaric specific heat.
When the term (2/3)c, (W v — W) inequation (24)
(the effect of enthalpy diffusion) is neglected, an
analogy between @, and Oy, is valid and ®i; is ex-
pressed as

— @O = Ce(Sc)(142.65¢%¢ M%),  (28)

Table 1 shows some examples of the comparison of
the numerical solutions of ®}; with equations (19),
(23) and (28), and ®}.; with equations (20) and (24).
As for @, the errors of equations (19}, (23) and (28)
are less than 1, 2, and 2.5%, respectively. As for @y,
the error of equation (24) is less than 2%, while the
maximum error of equation (20) becomes about 16%
in some cases of the air-stream mixture, because equa-
tion (20) was derived from the numerical solution of
the basic equations in which the enthalpy diffusion
term is neglected. However, the effect of this error
upon the heat flux at the cooling surface is small,
because the values of g, are much smaller than those
of g,,.. On the other hand, when the values of ¢., and
4., are comparable and the values of Mgy are small,
the effect of enthalpy diffusion term upon the value of
&1 becomes small.

3.2. Free-convection condensation on a vertical flat
surface

According to the similarity transformation (6], the
gradient of mass concentration at the vapor-liguid
interface is given as

oW,y g \*,,
( )i:'(WIVi_WIVa;) (m) d)Gi (29)

oy

where g is the gravitational acceleration, ®g the
differential derivative of normalized mass con-
centration with respect to the following. similarity

variable :
1/4
PN A
Hov = (¥ 5)(4‘,‘2’)‘) .

Similarly to the case of forced-convection conden-
sation, the following equations are obtained from
equations (29), (1) and (2)

g 1/4
B.\‘ =pyD (m) (_d)oi)

gxl 4 ,
th = <W) (—(I)Gi)‘

v

(30)

@3

(32

On the other hand, the Nusselt number Nu,, for the

convective heat transfer coefficient of vapor phase is

given as [6]
x) 1/4
Nu,, = (g—> (—O%vi)-

4vd (33)

The functional form of equations (32) and (33) is the
same.

Fujii [6] proposed the following formulas from the
similarity solution for the mixtures of ethanol-water
and air-water:

2 0.5
— g = /2Cc(Se)(x o) (—~> we*,

1+ Wy
1< Wy<100 (34)
—Ogy; = \/ZCG(P"V)(X+ Prv)”“
x [T+ 1.13Pry *(Mgv) ' {1 -0.85¢c,,,
X Wy — Wn_)}], Mcv =1 (3%
where
3 C /4
C, ")=—{————~—} , {=S8c or Pr
o® =2 avasgrasy * * v
(36)
Sc\'?
X = w,+or <1—D’—v) ~ W, W (37
Pr,\?
= w, (S—cv> + wr — Wy, W (38)
- (MZ_MZ)(WIViMWIVm) (39)
” Ml—(Ml—Ml)MIV:o
(Tve. —Th)
wr = _vﬁf (40)
. m.x
Mgy = ——W 41
F‘v< 4 >
xgw
Gr.=—5 (42)
Vy
@ = @y, +Wr — W, Wy (43)

and M, and M, are the molecular weights of volatile
and less volatile components, respectively. When the
effect of the enthalpy diffusion term in equation (35)
is neglected, similarly to the case of forced-convection
condensation, ®g; can be expressed from the analogy
between heat and mass transfer as

— @5 = \/2Ca(S)(x So) {1+ 11350
% (MGV)I.H}‘ (44)

In Fig. 1, the similarity solution is plotted in the
coordinate of

[{—®Gi//2Ca(ScHy Sc) 4} —1]1Sc= %% vs Mgy,

and the solid line expresses equation (44). The agree-
ment between them is good. Table 2 shows some
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Laminar film condensation 33

o Ethanol-Water
o Air—Water
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FiG. 1. Relation between [~ ®;/,/2C5(Se) (x Se) ! —11S¢ =%
and Mgy.

examples of the comparisons of the similarity solution
@y; with equations (44) and (34) and ®g,; with equa-
tion (35). As for ®g;, most of the data agree with
equations (44) and (34) within an error of 2%,
although the errors for a few data are a little more,
except in the cases of Nos. 1-4 ~ 1-6, which are
beyond the applicable range of equation (34). As for
Ogv:, most of the data agree with equation (35) within
an error of 1%, although the errors for a few data are
about 3%.

The Sh, equation can be derived from equations
(32) and (44) or equations (32) and (34) as

Sh, = {14+ 1.138¢***(Mgy) """}

1/4
x Co(S¢) (é Gr, Sc> (45)

7\ X i/a
_ 0.8 N AP
Sh, = (l n WR) Wg*Cg(Sc) <w Gr, Sc) (46)

and the MNu,, equation from equations (33) and (35)
as

Nug, = [1+ L13Pr&*S(Mgy) ' "{1-0.85¢,,,

+

1/4
x (Wi — W10)Y1Ca(Pry) (% Gr, Prv> @7

where the Grashof number defined by equation (42)
is corrected by multiplying y/w in equations (45) and
(46) and ¢* /w in equation (47).

4. CONCLUSIONS

(1) As for the convective heat transfer in the case
of forced-convection condensation, equation (20) by
Rose and equation (24) by Fujii ef al. have almost the
same high accuracy, though their functional forms
are different. However, the accuracy of equation (20)
decreases in the case where the effect of the enthalpy
diffusion term becomes marked, although its effect
upon the heat flux at the cooling surface is small.

(2) As for the mass transfer coefficient in the case
of forced-convection condensation, equation (19) by
Rose, equation (23) by Fujii ef al., and equation (28),
which has been derived from equation (24) by replac-
ing Nu, with Sh and Pr, with Sc, have almost the
same high accuracy, though their functional forms are
different from each other.

(3) In the case of free-convection condensation,
equation (44) for mass transfer has been derived from
equation (35) for convective heat transfer, where the
replacing x*/w with x/w, which is a correction con-
cerning the buoyancy force, is done as well as the
replacing Nu, with Sk and Pr, with Sc. The applicable
range of equation (44) is wider than that of equation
(34) by Fujii, although their accuracy is almost the
same.
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